
Load balancing: power-of-2-choice
When a ball comes in, pick two bins and place the ball in the bin
with smaller number of balls.

Turns out with just checking two bins maximum number of
balls drops to O(log log n)!

=> called “power-of-2-choices”

Intuition: Ideas?
Even though max loaded bins has O("#$ %

"#$ "#$ %) balls, most
bins have far fewer balls.

15-750 Page 92

Load balancing: power-of-2-choice
Proof (Intuition):

For a ball b, let
height(b) = number of balls in its bin after placing b

Probability of an incoming ball getting height 3 is at most ?
• Q: What needs to happen for this?
• Q: Fraction of bins that can have ≥ 2 balls?

− at most ½ (since there are only N balls)
½ * ½ = ¼

So expected number of bins with 3 balls is at most = N/4

15-750 Page 93

Load balancing: power-of-2-choice
Proof (Intuition) cont.:
(For a ball b, let height(b) = number of balls in its bin after
placing b)

Probability of an incoming ball getting height 4 is at most ?
¼ * ¼ = 1/16 =

Probability of an incoming ball getting height h is at most ?

Choosing h = O(log log N)+2 gives probability 1/N.

15-750 Page 94

Load balancing: power-of-d-choice
When a ball comes in, pick d bins and place the ball in the bin
with smallest number of balls.

Theorem:
For any d>=2 the d-choice process gives a maximum load of

with probability at least 1 – O(1/N)

Observations:
Just looking at two bins gives huge improvement.
Diminishing returns for looking at more than 2 bins.

15-750 Page 95

15-750 Page 96

15-750: Graduate Algorithms

Hashing:
Hash function basics and some constructions
Hash tables
Bloom filters
Load balancing (balls and bins)
Data streaming model

Data streaming model

• Different computational model: elements going past in a
“stream”

• Limited storage space: Insufficient to store all the elements

• Example applications:

• Switch or a router where packets are passing through.

• Big data

Notation:

• Denote the elements of the stream as a1, a2,...

• Each element is from an alphabet U

• Each element takes b bits to represent

• E.g. 32-bit IP addresses

• The question: what functions of input stream can we compute
with what time and space overhead.

15-750 Page 97

Data streaming model
• Functions of interest:

• Sum of all elements seen (easy)
• Max of the elements seen (easy)
• Median (tricky to do with small space)
• Heavy-hitters, i.e., element(s) that have appeared

most often)
• Number of distinct elements seen

15-750 Page 98

Sampling vs. Hashing

Sampling is a natural option (since it helps reduce the amount
of data)
But can lead to incorrect answers if not done correctly.

Example from [1]:
Suppose we want to figure out

#“uniques” = elements that occur exactly once.
Consider this sampling approach:
• Sample 10% of the stream by picking each element with

probability 0.1.
• Count uniques and scale up the answer by 10

15-750 Page 99

1. “Mining of Massive Datasets” book from Stanford: http://infolab.stanford.edu/~ullman/mmds/book.pdf

Sampling vs. Hashing
This will lead to incorrect answer:
Suppose stream length is n and n/2 are uniques and n/4 appear
twice.
Q: Correct answer is? n/2

In the sampled stream,
Expected length = n/10
#uniques = 0.1*n/2 + n/4 (2*0.1 – 0.1^2)

(approx.) n/10
So our estimate of #uniques = n (incorrect)

This is in expectation, but will hold with high probability as n
gets large (by Chernoff bound)
15-750 Page 100

Sampling vs. Hashing
Q: What was the problem here?
Sampling decision was being made independently on each
element of the stream.

Q: What we should have done?
If an element is sampled, all its copies are also sampled

Q: How can we achieve this via hashing?
Hash the elements to the range [10] and take elements that
map to one value, say 0.
If we have at least 1-wise independence then we get 1/10
fraction of the stream along with duplicates.

15-750 Page 101

Streams as vectors
Useful abstraction: viewing streams as vectors (in high
dimensional space)
Stream at time t as a vector xt ∈ Z|U|

xt = (xt1,xt2,...,xt|U|)

Element i =
number of times ith element of U has been seen until time t
If next element is j, then xj is incremented by 1

15-750 Page 102

Streams as vectors
Leads to an extension of the model where each element of the
stream is either
(1) A new element or (2) old element departing (i.e. deletions).

That is, updates to the stream looks like (add e) or (del e).

Assumption: #deletes for any element <= #additions.
=> running count for each element is non-zero

E.g.: U = {A, B, C}
add(A), add(B), add(A), del(B), del(A), add(C), . . .
(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 0, 0), (1, 0, 0), (1, 0, 1), .

15-750 Page 103

Streams as vectors

This vector notation makes it easy to to formulate some of the
data stream problems:

• Heavy hitters = estimate “large” entries in the vector x
• Total number of elements seen = Sum of the elements of x

(easy one)
• #distinct elements = #non-zero entries in x

15-750 Page 104

Heavy hitters
Many ways to formalize the heavy hitters problem.

ε-heavy-hitters: Indices i such that xi > ε ∥ x ∥1

Let us consider a simpler problem first.
Count-Query:
At any time t, given an index i, output the value of xti with an
error of at most ε∥xt∥1. I.e., output an estimate

yi ∈ xi ± ε ∥ x ∥1

Q: Given an algorithm for Count-Query, how to get heavy
hitters?
To first order: we can look for i’s s.t. yi >0
(at least a good first step)

15-750 Page 105

Heavy hitters

Q: Would sampling work for Count-query?

No. Example: N copies of A arrives and then they all depart.
Then sqrt(N) copies of B arrives.

At the end, heavy hitter = only B

But if we sample the elements with any prob. less that sqrt(N),

we don’t expect to see any B.

Next:

Hashing-based solution: Count-Min Sketch

By Cormode and Muthukrishnan.

15-750 Page 106

Hashing-based solution: Count-Min Sketch
A hashing based solution (Step 1)

Let h: U -> [M] be a hash function
Let a A[1...M] be an array capable of storing non-negative
integers.

When update a_t arrives
If (a_t == (add, i))

then A[h(i)]++;
else // a_t == (del, i)

A[h(i)]--;

15-750 Page 107

Hashing-based solution: Count-Min Sketch
Estimate for xti: yi = A[h(i)]

Q: What does yi include?
Count for ith element + for all other elements that has a hash
collision with it

<Analysis of expected error for universal hash families>

This is in expectation. Now we want to “boost” the probability
that we are close to expectation.

15-750 Page 108

Hashing-based solution: Count-Min Sketch
Estimate for xti: yi = A[h(i)]

Q: What does yi include?
Count for ith element + for all other elements that has a hash
collision with it

15-750 Page 109

Hashing-based solution: Count-Min Sketch

A hashing based solution (Step 2)
Amplify the probability that we are close to the expectation:
Independent repetitions!

ℓ hash functions: h1, h2, .., hℓ : U -> [M]
ℓ arrays A1, … Aℓ
(one for each hash function)

Same approach as before applied independently on each of the
ℓ arrays using the associated hash function.

What should be the new estimate for the count query?

15-750 Page 110

