oad balancing: power-of-2-choice

When a ball comes in, pick two bins and place the ball in the bin
with smaller number of balls.

Turns out with just checking two bins maximum number of
balls drops to O(log log n)!

=> called “power-of-2-choices”

Intuition: Ideas?

log N

Even though max loaded bins has O ) balls, most

loglog N
bins have far fewer balls.

15-750 Page 92



oad balancing: power-of-2-choice

Proof (Intuition):

For a ball b, let
height(b) = number of balls in its bin after placing b

Probability of an incoming ball getting height 3 is at most ?
* Q: What needs to happen for this?

* Q: Fraction of bins that can have = 2 balls?
- at most 2 (since there are only N balls)
V2% 2="a

So expected number of bins with 3 balls is at most = N/4
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oad balancing: power-of-2-choice

Proof (Intuition) cont.:

(For a ball b, let height(b) = number of balls in its bin after
placing b)

Probability of an incoming ball getting height 4 is at most ?

Va*Va=116= _L__
22

Probability of an incoming ball getting height h is at most ?
|
h-2_

2
2

Choosing h = O(log log N)+2 gives probability 1/N.
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oad balancing: power-of-d-choice

When a ball comes in, pick d bins and place the ball in the bin
with smallest number of balls.

Theorem:
For any d>=2 the d-choice process gives a maximum load of

Q’ng Lg N+ o(V)
Lo A

with probability at least 1 — O(1/N)

Qbservations:
Just looking at two bins gives huge improvement.
Diminishing returns for looking at more than 2 bins.
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15-750: Graduate Algorithms

Hashing:
Hash function basics and some constructions
Hash tables
Bloom filters
Load balancing (balls and bins)
Data streaming model
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Data streaming model

 Different computational model: elements going past in a
“stream”

 Limited storage space: Insufficient to store all the elements

« Example applications:
« Switch or a router where packets are passing through.
* Big data

Notation:

* Denote the elements of the stream as a1, az,...
« Each element is from an alphabet U
« Each element takes b bits to represent

« E.g. 32-bit IP addresses

* The question: what functions of input stream can we compute
with what time and space overhead.
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Data streaming model

* Functions of interest:

15-750

Sum of all elements seen (easy)
Max of the elements seen (easy)
Median (tricky to do with small space)

Heavy-hitters, i.e., element(s) that have appeared

most often)
Number of distinct elements seen
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Sampling vs. Hashing

Sampling is a natural option (since it helps reduce the amount
of data)

But can lead to incorrect answers if not done correctly.

Example from [1]:
Suppose we want to figure out

#'uniques” = elements that occur exactly once.
Consider this sampling approach:

« Sample 10% of the stream by picking each element with
probability 0.1.

« Count uniques and scale up the answer by 10

1. “Mining of Massive Datasets” book from Stanford: http://infolab.stanford.edu/~ullman/mmds/book.pdf
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Sampling vs. Hashing

This will lead to incorrect answer:

Suppose stream length is n and n/2 are uniques and n/4 appear
twice.

Q: Correct answer is? n/2

In the sampled stream,

Expected length = n/10

#uniques = 0.1*n/2 + n/4 (270.1 — 0.172)
(approx.) n/10

So our estimate of #uniques = n (incorrect)

This is in expectation, but will hold with high probability as n
gets large (by Chernoff bound)
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Sampling vs. Hashing

Q: What was the problem here?

Sampling decision was being made independently on each
element of the stream.

Q: What we should have done?
If an element is sampled, all its copies are also sampled

Q: How can we achieve this via hashing?

Hash the elements to the range [10] and take elements that
map to one value, say 0.

If we have at least 1-wise independence then we get 1/10
fraction of the stream along with duplicates.
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Streams as vectors

Useful abstraction: viewing streams as vectors (in high
dimensional space)

Stream at time t as a vector xt e ZIYl
Xt = (x4,x2,...,x4u1)

Element | =
number of times ith element of U has been seen until time t

If next element is |, then x;is incremented by 1
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Streams as vectors

Leads to an extension of the model where each element of the
stream is either

(1) A new element or (2) old element departing (i.e. deletions).

That is, updates to the stream looks like (add e) or (del e).

Assumption: #deletes for any element <= #additions.
=> running count for each element is non-zero

E.g..U={A B, C}
add(A), add(B), add(A), del(B), del(A), add(C), .
(0,0,0),(1,0,0),(1,1,0),(2,1,0), (2,0, 0), (1, 0 0), (1,0, 1),.
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Streams as vectors

This vector notation makes it easy to to formulate some of the
data stream problems:

* Heavy hitters = estimate “large” entries in the vector x

* Total number of elements seen = Sum of the elements of x
(easy one)

« #distinct elements = #non-zero entries in X
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Heavy hitters

Many ways to formalize the heavy hitters problem.
e-heavy-hitters: Indices | such that xi> € || X [|1

Let us consider a simpler problem first.
Count-Query:

At any time t, given an index i, output the value of x4 with an
error of at most €|Ix!||1. l.e., output an estimate
VieEXitel| x|

Q: Given an algorithm for Count-Query, how to get heavy
hitters?

To first order: we can look fori's s.t. yi>0
(at least a good first step)
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Heavy hitters

Q: Would sampling work for Count-query?

No. Example: N copies of A arrives and then they all depart.
Then sqgrt(N) copies of B arrives.

At the end, heavy hitter = only B

But if we sample the elements with any prob. less that sqrt(N),
we don't expect to see any B.

Next:
Hashing-based solution: Count-Min Sketch
By Cormode and Muthukrishnan.
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Hashing-based solution: Count-Min Sketch

A hashing based solution (Step 1)

Let h: U -> [M] be a hash function

Let a A[1...M] be an array capable of storing non-negative
integers.

When update a t arrives
If (a_t==(add, 1))
then A[h(i)]++;
else /[ a_t == (del, i)
ALh(i)]--;
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Hashing-based solution: Count-Min Sketch

Estimate for xt: yi = A[h(i)]

Q: What does yi include?

Count for ith element + for all other elements that has a hash
collision with it

<Analysis of expected error for universal hash families>

This is in expectation. Now we want to “boost” the probability
that we are close to expectation.
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Hashing-based solution: Count-Min Sketch

Estimate for xt: yi = A[h(i)]

Q: What does yi include?
Count for ith element + for all other elements that has a hash
collision with it
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Hashing-based solution: Count-Min Sketch

A hashing based solution (Step 2)

Amplify the probability that we are close to the expectation:
Independent repetitions!

¢ hash functions: h1, h2, .., he : U -=> [M]
£ arrays A1, ... Ar
(one for each hash function)

Same approach as before applied independently on each of the
£ arrays using the associated hash function.

What should be the new estimate for the count query?
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