Node.js

Get telemetry for your app in less than 5 minutes!

You are viewing the English version of this page because it has not yet been fully translated. Interested in helping out? See Contributing.

This page will show you how to get started with OpenTelemetry in Node.js.

You will learn how to instrument both traces and metrics and log them to the console.

Prerequisites

Ensure that you have the following installed locally:

Example Application

The following example uses a basic Express application. If you are not using Express, that’s OK — you can use OpenTelemetry JavaScript with other web frameworks as well, such as Koa and Nest.JS. For a complete list of libraries for supported frameworks, see the registry.

For more elaborate examples, see examples.

Dependencies

To begin, set up an empty package.json in a new directory:

npm init -y

Next, install Express dependencies.

npm install express @types/express
npm install -D tsx  # a tool to run TypeScript (.ts) files directly with node
npm install express

Create and launch an HTTP Server

Create a file named app.ts (or app.js if not using TypeScript) and add the following code to it:

/*app.ts*/
import express, { Express } from 'express';

const PORT: number = parseInt(process.env.PORT || '8080');
const app: Express = express();

function getRandomNumber(min: number, max: number) {
  return Math.floor(Math.random() * (max - min + 1) + min);
}

app.get('/rolldice', (req, res) => {
  res.send(getRandomNumber(1, 6).toString());
});

app.listen(PORT, () => {
  console.log(`Listening for requests on http://localhost:${PORT}`);
});
/*app.js*/
const express = require('express');

const PORT = parseInt(process.env.PORT || '8080');
const app = express();

function getRandomNumber(min, max) {
  return Math.floor(Math.random() * (max - min + 1) + min);
}

app.get('/rolldice', (req, res) => {
  res.send(getRandomNumber(1, 6).toString());
});

app.listen(PORT, () => {
  console.log(`Listening for requests on http://localhost:${PORT}`);
});

Run the application with the following command and open http://localhost:8080/rolldice in your web browser to ensure it is working.

$ npx tsx app.ts
Listening for requests on http://localhost:8080
$ node app.js
Listening for requests on http://localhost:8080

Instrumentation

The following shows how to install, initialize, and run an application instrumented with OpenTelemetry.

More Dependencies

First, install the Node SDK and autoinstrumentations package.

The Node SDK lets you initialize OpenTelemetry with several configuration defaults that are correct for the majority of use cases.

The auto-instrumentations-node package installs instrumentation libraries that will automatically create spans corresponding to code called in libraries. In this case, it provides instrumentation for Express, letting the example app automatically create spans for each incoming request.

npm install @opentelemetry/sdk-node \
  @opentelemetry/api \
  @opentelemetry/auto-instrumentations-node \
  @opentelemetry/sdk-metrics \
  @opentelemetry/sdk-trace-node

To find all autoinstrumentation modules, you can look at the registry.

Setup

The instrumentation setup and configuration must be run before your application code. One tool commonly used for this task is the –import flag.

Create a file named instrumentation.ts (or instrumentation.mjs if not using TypeScript), which will contain your instrumentation setup code.

/*instrumentation.ts*/
import { NodeSDK } from '@opentelemetry/sdk-node';
import { ConsoleSpanExporter } from '@opentelemetry/sdk-trace-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import {
  PeriodicExportingMetricReader,
  ConsoleMetricExporter,
} from '@opentelemetry/sdk-metrics';

const sdk = new NodeSDK({
  traceExporter: new ConsoleSpanExporter(),
  metricReader: new PeriodicExportingMetricReader({
    exporter: new ConsoleMetricExporter(),
  }),
  instrumentations: [getNodeAutoInstrumentations()],
});

sdk.start();
/*instrumentation.mjs*/
import { NodeSDK } from '@opentelemetry/sdk-node';
import { ConsoleSpanExporter } from '@opentelemetry/sdk-trace-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import {
  PeriodicExportingMetricReader,
  ConsoleMetricExporter,
} from '@opentelemetry/sdk-metrics';

const sdk = new NodeSDK({
  traceExporter: new ConsoleSpanExporter(),
  metricReader: new PeriodicExportingMetricReader({
    exporter: new ConsoleMetricExporter(),
  }),
  instrumentations: [getNodeAutoInstrumentations()],
});

sdk.start();

Run the instrumented app

Now you can run your application as you normally would, but you can use the --import flag to load the instrumentation before the application code. Make sure you don’t have other conflicting --import or --require flags such as --require @opentelemetry/auto-instrumentations-node/register in your NODE_OPTIONS environment variable.

$ npx tsx --import ./instrumentation.ts app.ts
Listening for requests on http://localhost:8080
$ node --import ./instrumentation.mjs app.js
Listening for requests on http://localhost:8080

Open http://localhost:8080/rolldice in your web browser and reload the page a few times. After a while you should see the spans printed in the console by the ConsoleSpanExporter.

View example output
{
  resource: {
    attributes: {
      'host.arch': 'arm64',
      'host.id': '8FEBBC33-D6DA-57FC-8EF0-1A9C14B919F8',
      'process.pid': 12460,
      // ... some resource attributes elided ...
      'process.runtime.version': '22.17.1',
      'process.runtime.name': 'nodejs',
      'process.runtime.description': 'Node.js',
      'telemetry.sdk.language': 'nodejs',
      'telemetry.sdk.name': 'opentelemetry',
      'telemetry.sdk.version': '2.0.1'
    }
  },
  instrumentationScope: {
    name: '@opentelemetry/instrumentation-express',
    version: '0.52.0',
    schemaUrl: undefined
  },
  traceId: '61e8960c349ca2a3a51289e050fd3b82',
  parentSpanContext: {
    traceId: '61e8960c349ca2a3a51289e050fd3b82',
    spanId: '631b666604f933bc',
    traceFlags: 1,
    traceState: undefined
  },
  traceState: undefined,
  name: 'request handler - /rolldice',
  id: 'd8fcc05ac4f60c99',
  kind: 0,
  timestamp: 1755719307779000,
  duration: 2801.5,
  attributes: {
    'http.route': '/rolldice',
    'express.name': '/rolldice',
    'express.type': 'request_handler'
  },
  status: { code: 0 },
  events: [],
  links: []
}
{
  resource: {
    attributes: {
      'host.arch': 'arm64',
      'host.id': '8FEBBC33-D6DA-57FC-8EF0-1A9C14B919F8',
      'process.pid': 12460,
      // ... some resource attributes elided ...
      'process.runtime.version': '22.17.1',
      'process.runtime.name': 'nodejs',
      'process.runtime.description': 'Node.js',
      'telemetry.sdk.language': 'nodejs',
      'telemetry.sdk.name': 'opentelemetry',
      'telemetry.sdk.version': '2.0.1'
    }
  },
  instrumentationScope: {
    name: '@opentelemetry/instrumentation-http',
    version: '0.203.0',
    schemaUrl: undefined
  },
  traceId: '61e8960c349ca2a3a51289e050fd3b82',
  parentSpanContext: undefined,
  traceState: undefined,
  name: 'GET /rolldice',
  id: '631b666604f933bc',
  kind: 1,
  timestamp: 1755719307777000,
  duration: 4705.75,
  attributes: {
    'http.url': 'http://localhost:8080/rolldice',
    'http.host': 'localhost:8080',
    'net.host.name': 'localhost',
    'http.method': 'GET',
    'http.scheme': 'http',
    'http.target': '/rolldice',
    'http.user_agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:141.0) Gecko/20100101 Firefox/141.0',
    'http.flavor': '1.1',
    'net.transport': 'ip_tcp',
    'net.host.ip': '::ffff:127.0.0.1',
    'net.host.port': 8080,
    'net.peer.ip': '::ffff:127.0.0.1',
    'net.peer.port': 63067,
    'http.status_code': 200,
    'http.status_text': 'OK',
    'http.route': '/rolldice'
  },
  status: { code: 0 },
  events: [],
  links: []
}

The generated span tracks the lifetime of a request to the /rolldice route.

Send a few more requests to the endpoint. After a moment, you’ll see metrics in the console output, such as the following:

View example output
{
  descriptor: {
    name: 'http.server.duration',
    type: 'HISTOGRAM',
    description: 'Measures the duration of inbound HTTP requests.',
    unit: 'ms',
    valueType: 1,
    advice: {}
  },
  dataPointType: 0,
  dataPoints: [
    {
      attributes: {
        'http.scheme': 'http',
        'http.method': 'GET',
        'net.host.name': 'localhost',
        'http.flavor': '1.1',
        'http.status_code': 200,
        'net.host.port': 8080,
        'http.route': '/rolldice'
      },
      startTime: [ 1755719307, 782000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: {
        min: 1.439792,
        max: 5.775,
        sum: 15.370167,
        buckets: {
          boundaries: [
               0,    5,    10,   25,
              50,   75,   100,  250,
             500,  750,  1000, 2500,
            5000, 7500, 10000
          ],
          counts: [
            0, 5, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0,
            0, 0, 0, 0
          ]
        },
        count: 6
      }
    },
    {
      attributes: {
        'http.scheme': 'http',
        'http.method': 'GET',
        'net.host.name': 'localhost',
        'http.flavor': '1.1',
        'http.status_code': 304,
        'net.host.port': 8080,
        'http.route': '/rolldice'
      },
      startTime: [ 1755719433, 609000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: {
        min: 1.39575,
        max: 1.39575,
        sum: 1.39575,
        buckets: {
          boundaries: [
               0,    5,    10,   25,
              50,   75,   100,  250,
             500,  750,  1000, 2500,
            5000, 7500, 10000
          ],
          counts: [
            0, 1, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0,
            0, 0, 0, 0
          ]
        },
        count: 1
      }
    }
  ]
}
{
  descriptor: {
    name: 'nodejs.eventloop.utilization',
    type: 'OBSERVABLE_GAUGE',
    description: 'Event loop utilization',
    unit: '1',
    valueType: 1,
    advice: {}
  },
  dataPointType: 2,
  dataPoints: [
    {
      attributes: {},
      startTime: [ 1755719362, 939000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: 0.00843049454565211
    }
  ]
}
{
  descriptor: {
    name: 'v8js.gc.duration',
    type: 'HISTOGRAM',
    description: 'Garbage collection duration by kind, one of major, minor, incremental or weakcb.',
    unit: 's',
    valueType: 1,
    advice: { explicitBucketBoundaries: [ 0.01, 0.1, 1, 10 ] }
  },
  dataPointType: 0,
  dataPoints: [
    {
      attributes: { 'v8js.gc.type': 'minor' },
      startTime: [ 1755719303, 5000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: {
        min: 0.0005120840072631835,
        max: 0.0022552499771118163,
        sum: 0.006526499509811401,
        buckets: { boundaries: [ 0.01, 0.1, 1, 10 ], counts: [ 6, 0, 0, 0, 0 ] },
        count: 6
      }
    },
    {
      attributes: { 'v8js.gc.type': 'incremental' },
      startTime: [ 1755719310, 812000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: {
        min: 0.0003403329849243164,
        max: 0.0012867081165313721,
        sum: 0.0016270411014556885,
        buckets: { boundaries: [ 0.01, 0.1, 1, 10 ], counts: [ 2, 0, 0, 0, 0 ] },
        count: 2
      }
    },
    {
      attributes: { 'v8js.gc.type': 'major' },
      startTime: [ 1755719310, 830000000 ],
      endTime: [ 1755719482, 940000000 ],
      value: {
        min: 0.0025888750553131105,
        max: 0.005744750022888183,
        sum: 0.008333625078201293,
        buckets: { boundaries: [ 0.01, 0.1, 1, 10 ], counts: [ 2, 0, 0, 0, 0 ] },
        count: 2
      }
    }
  ]
}

Next Steps

Enrich your instrumentation generated automatically with manual instrumentation of your own codebase. This gets you customized observability data.

You’ll also want to configure an appropriate exporter to export your telemetry data to one or more telemetry backends.

If you’d like to explore a more complex example, take a look at the OpenTelemetry Demo, which includes the JavaScript based Payment Service and the TypeScript based Frontend Service.

Troubleshooting

Did something go wrong? You can enable diagnostic logging to validate that OpenTelemetry is initialized correctly:

/*instrumentation.ts*/
import { diag, DiagConsoleLogger, DiagLogLevel } from '@opentelemetry/api';

// For troubleshooting, set the log level to DiagLogLevel.DEBUG
diag.setLogger(new DiagConsoleLogger(), DiagLogLevel.INFO);

// const sdk = new NodeSDK({...
/*instrumentation.mjs*/
import { diag, DiagConsoleLogger, DiagLogLevel } from '@opentelemetry/api';

// For troubleshooting, set the log level to DiagLogLevel.DEBUG
diag.setLogger(new DiagConsoleLogger(), DiagLogLevel.INFO);

// const sdk = new NodeSDK({...